SLAT-WALL STORAGE SYSTEM
If there’s one certainty when it comes to setting up a shop, it’s that as soon as you’ve got everything arranged the way you want it, your storage needs will change. You’ll get a new tool, find some extra hardware, or come across something too good to pass up. That usually means getting rid of something else or reorganizing a drawer or shelf to create extra space. But that’s the beauty of this one-wall workshop — it’s both flexible and expandable. It uses an arrangement system that is commonly found in department stores — slat wall. Our slat wall is nothing more than a sheet of plywood with rows of evenly spaced slats attached to the front. Grooves between the slats allow you to hang a variety of shelves, racks, bins, and other storage fixtures. And rearranging any accessory is simply a matter of lifting it off the slat wall and moving it to a new position.
The heart of this storage system is the shop-made slat wall. Each section of slat wall consists of a plywood panel with several evenly spaced slats. The top edge of each slat is beveled at 45° to create a lip. Each hanging accessory has a matching beveled cleat. This allows you to simply hook the accessory over the slat and position it wherever you wish on the panel. Figure ‘1a’ illustrates how this beveled cleat system works. (This is sometimes referred to as a French cleat.)

Slat Wall. Making each section of slat wall is pretty straightforward. As you can see in Figure 1, each section consists of a plywood panel plus seven wide slats and two narrow filler strips at the top and bottom.

After cutting the panels to size, I cut the slats to final width, then cut a 45° bevel along one edge of each one. Note that there’s a narrow (1/16") flat at the tip of the bevel, as shown in Figure 1a.

The bottom filler can also be cut to width and beveled, but leave the top filler extra wide (and unbeveled) for now. You’ll trim it to final width later, after you attach all the slats.

The trickiest part of attaching the slats is getting them evenly spaced. Page 14 shows a tip for doing this, as well as drilling all the countersunk screw holes in the back panel. Once the slats are attached, all that’s left is to round off the corners.

Because the slat wall may end up holding a lot of weight, make sure that you securely fasten each section to your shop wall using lag screws or wall anchors.

COMPONENTS

The slat wall is just the backdrop for this storage system. What makes it so useful is the range of storage components that mount to the wall. You can mix and match these to suit your needs. And the order in which you build them doesn’t really matter.

The arrangement shown in the photo on the previous page is just one suggestion. The materials and hardware list on the next page shows the number of parts you’ll need for this configuration. But if you’re going to build a different combination of components, you’ll have to...
adjust the number of parts. As a bonus, we've also included plans for a vise stand and a shop light mount starting on page 8.

Cord Hook. One of the simplest components is a basic hook. It's great for hanging up extension cords, air hoses, or even a shop vacuum hose.

As you can see in Figure 2 on page 2, the hook consists of just five parts — a back, face, a pair of brackets, and a cleat. All the parts are cut from \(\frac{3}{4} \)" plywood. The two brackets are beveled to ease the edges and conform to the shape of a coiled cord or hose. The top edge of the face also has a radius to prevent snags and catches as you lift a cord on or off the hook. The parts are simply glued and screwed together. Then the cleat is added to the back.

Pegboard. No shop storage system would be complete without pegboard. This basic panel allows you to hang up your most-often used tools so they're ready to go at a moment's notice. The panel is just a piece of \(\frac{1}{4} \)" pegboard mounted to a plywood frame (Figure 3). The frame creates clearance between the pegboard and the slat wall for hooks. Because the frame doesn't provide much structural support, I didn’t bother with joinery. I simply cut the rails and stiles to length and attached them directly to the back of the pegboard panel with screws. Then after rounding off the corners, you can add a beveled cleat to the back.

Materials & Hardware

SLAT WALL (3 sections shown)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A Back Panels (3)</td>
<td>48 x 64 - (\frac{3}{4}) Ply.</td>
</tr>
<tr>
<td>B Slats (21)</td>
<td>5(\frac{1}{2}) x 48 - (\frac{3}{4}) Ply.</td>
</tr>
<tr>
<td>C Top/Bottom Fillers (6)</td>
<td>2(\frac{1}{2}) x 48 - (\frac{3}{4}) Ply.</td>
</tr>
</tbody>
</table>

CORD HOOKS (2 shown)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D Backs (2)</td>
<td>7 x 7 - (\frac{3}{4}) Ply.</td>
</tr>
<tr>
<td>E Faces (2)</td>
<td>3(\frac{1}{2}) x 5(\frac{1}{2}) - (\frac{3}{4}) Ply.</td>
</tr>
<tr>
<td>F Brackets (4)</td>
<td>3 x 3(\frac{1}{2}) - (\frac{3}{4}) Ply.</td>
</tr>
<tr>
<td>G Cleats (2)</td>
<td>2 x 7 - (\frac{3}{4}) Ply.</td>
</tr>
</tbody>
</table>

PEGBOARD

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H Panel (1)</td>
<td>23(\frac{1}{2}) x 43(\frac{1}{2}) - (\frac{1}{4}) Pegboard</td>
</tr>
<tr>
<td>I Rails (2)</td>
<td>1(\frac{3}{4}) x 40 - (\frac{3}{4}) Ply.</td>
</tr>
<tr>
<td>J Stiles (2)</td>
<td>1(\frac{3}{4}) x 23(\frac{1}{2}) - (\frac{3}{4}) Ply.</td>
</tr>
<tr>
<td>K Cleat (1)</td>
<td>2 x 43(\frac{1}{2}) - (\frac{3}{4}) Ply.</td>
</tr>
</tbody>
</table>

WORKSTATION

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>L Side Supports (2)</td>
<td>15 x 14 - (\frac{3}{4}) Ply.</td>
</tr>
<tr>
<td>M Drawer Divider (1)</td>
<td>15 x 21 - (\frac{3}{4}) Ply.</td>
</tr>
<tr>
<td>N Filler Block (1)</td>
<td>3(\frac{1}{4}) x 20(\frac{1}{2}) - (\frac{1}{2}) Ply.</td>
</tr>
<tr>
<td>O Top Layers (2)</td>
<td>16 x 24 - (\frac{3}{4}) Ply.</td>
</tr>
<tr>
<td>P Cleat (1)</td>
<td>2 x 24 - (\frac{3}{4}) Ply.</td>
</tr>
<tr>
<td>Q Drawer Front/Back (2)</td>
<td>(\frac{1}{2}) x 2(\frac{1}{2}) - 19</td>
</tr>
<tr>
<td>R Drawer Sides (2)</td>
<td>(\frac{1}{2}) x 2(\frac{3}{4}) - 12</td>
</tr>
<tr>
<td>S Drawer Bottom (1)</td>
<td>11(\frac{1}{2}) x 19 - (\frac{1}{4}) Hdbd.</td>
</tr>
<tr>
<td>T Drawer False Front (1)</td>
<td>3(\frac{1}{2}) x 20(\frac{1}{2}) - (\frac{3}{4}) Ply.</td>
</tr>
</tbody>
</table>

CABINET

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>U Case Sides (2)</td>
<td>7(\frac{1}{2}) x 28 - (\frac{3}{4}) Ply.</td>
</tr>
<tr>
<td>V Case Top/Bottom (2)</td>
<td>7(\frac{1}{2}) x 20 - (\frac{3}{4}) Ply.</td>
</tr>
<tr>
<td>W Case Back (1)</td>
<td>20 x 27 - (\frac{3}{4}) Ply.</td>
</tr>
<tr>
<td>X Doors (2)</td>
<td>10(\frac{1}{4}) x 28 - (\frac{3}{4}) Ply.</td>
</tr>
<tr>
<td>Y Shelf (1)</td>
<td>6(\frac{1}{2}) x 19(\frac{1}{2}) - (\frac{3}{4}) Ply.</td>
</tr>
<tr>
<td>Z Cleat (1)</td>
<td>2 x 21 - (\frac{1}{2}) Ply.</td>
</tr>
</tbody>
</table>

BINS (6 shown)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AA Ends (12)</td>
<td>7(\frac{1}{4}) x 5 - (\frac{3}{4}) Ply.</td>
</tr>
<tr>
<td>BB Fronts (6)</td>
<td>5(\frac{1}{4}) x 17 - (\frac{3}{4}) Ply.</td>
</tr>
<tr>
<td>CC Backs (6)</td>
<td>5 x 17 - (\frac{3}{4}) Ply.</td>
</tr>
<tr>
<td>DD Bottoms (6)</td>
<td>3(\frac{1}{2}) x 17 - (\frac{3}{4}) Ply.</td>
</tr>
<tr>
<td>EE Cleats (6)</td>
<td>2 x 18 - (\frac{3}{4}) Ply.</td>
</tr>
</tbody>
</table>

TOOL TOTE RACKS (2 shown)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FF Sides (4)</td>
<td>5 x 24 - (\frac{3}{4}) Ply.</td>
</tr>
<tr>
<td>GG Rack Shelves (6)</td>
<td>9 x 20 - (\frac{3}{4}) Ply.</td>
</tr>
<tr>
<td>HH Shelf Lips (6)</td>
<td>(\frac{1}{2}) x 11 - 20</td>
</tr>
<tr>
<td>II Cleats (2)</td>
<td>2 x 21 - (\frac{1}{2}) Ply.</td>
</tr>
</tbody>
</table>

TOOL TOTES (6 shown)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>JJ Ends (12)</td>
<td>(\frac{1}{2}) x 5(\frac{1}{4}) - 8</td>
</tr>
<tr>
<td>KK Fronts/Backs (12)</td>
<td>(\frac{1}{2}) x 2(\frac{1}{2}) - 18(\frac{1}{2})</td>
</tr>
<tr>
<td>LL Bottoms (6)</td>
<td>8 x 18 - (\frac{1}{4}) Hdbd.</td>
</tr>
<tr>
<td>MM Handles (6)</td>
<td>(\frac{1}{4})-dia. x 18' EMT Conduit</td>
</tr>
</tbody>
</table>

SHELVES

(3 small, 2 medium, and 1 large shown)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NN Sm. Shelf Tops (3)</td>
<td>6 x 24 - (\frac{3}{4}) Ply.</td>
</tr>
<tr>
<td>OO Sm. Shelf Backs (3)</td>
<td>3 x 20(\frac{1}{2}) - (\frac{3}{4}) Ply.</td>
</tr>
<tr>
<td>PP Sm. Shelf Supports (6)</td>
<td>5 x 4(\frac{1}{2}) - (\frac{3}{8}) Ply.</td>
</tr>
<tr>
<td>QQ Med. Shelf Tops (2)</td>
<td>9 x 24 - (\frac{3}{4}) Ply.</td>
</tr>
<tr>
<td>RR Med. Shelf Backs (2)</td>
<td>4(\frac{1}{2}) x 20(\frac{1}{2}) - (\frac{3}{4}) Ply.</td>
</tr>
</tbody>
</table>

SPRAY CAN RACK

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>XX Sides (2)</td>
<td>5 x 34(\frac{1}{2}) - (\frac{3}{4}) Ply.</td>
</tr>
<tr>
<td>YY Backs (2)</td>
<td>3(\frac{1}{2}) x 16(\frac{1}{2}) - (\frac{3}{4}) Ply.</td>
</tr>
<tr>
<td>ZZ Rails (9)</td>
<td>(\frac{1}{4})-dia. x 17' EMT Conduit</td>
</tr>
<tr>
<td>AAA Cleat (1)</td>
<td>2 x 18 - (\frac{3}{4}) Ply.</td>
</tr>
</tbody>
</table>
The workstation and cabinet shown on these two pages are definitely the most involved of the slat wall components. But even so, they aren’t complicated to build. The workstation is just a thick, plywood top mounted to a couple of supports. A shallow drawer beneath the top provides storage space for pencils, layout tools, or a few basic hand tools.

The cabinet is nothing more than a plywood box with an adjustable shelf and a pair of doors.

To make the workstation, I started with the two side supports (Figure 4). After cutting these to overall size, each one receives a dado to hold a drawer divider, as shown in Figure 4b. Then a large bevel is cut on the front corner of each support.

Once the drawer divider is cut to size, you can screw the supports to the divider. A filler block (glued up from two layers of plywood) is cut to fit between the supports at the back. And then I installed the drawer slides before moving on to the top.

The top is made up of two layers of plywood. However, the lower layer is screwed to the side supports and filler block first. Then the upper layer is glued to the lower layer. A beveled cleat on the back completes the carcass of the workstation.

Drawer. As you can see in Figure 5, I used 1/2"-thick hardwood for most of the drawer parts. The drawer front and back are joined to the sides with tongue
and dado joints. The hardboard drawer bottom is captured in a groove cut on the inside face of all four drawer pieces.

A plywood false front completes the drawer. After adding a pull and the slides, it can be installed in the workstation.

Cabinet. As I said earlier, the cabinet is really little more than a plywood box (Figure 6). The sides are rabbeted on the ends to accept the top and bottom. And all four pieces are rabbeted along the back edge to hold the back. Before screwing the case together, you’ll want to drill shelf pin holes in the sides, as shown in Figures 6 and 6b.

Doors. The doors are simply two plywood panels cut to fit on the front of the case. They are mounted with no-mortise hinges.

Shelf. To complete the cabinet, I added a shelf. Again, this is just a plywood panel cut to size. The shelf rests on ¼" shelf pins. Like the other components, the last step is to add a beveled cleat to the back (Figure 6d).

BINS

When I first saw the storage bins on this project, they reminded me a little of feed troughs you might see on a farm. But they’re handy for storing objects that are too awkward or cumbersome to hang on a hook or set on a shelf.

To make the bins, I started by cutting the ends to size and cutting a taper along the front edge of each one, as shown in Figure 7. Then the ends are rabbeted on three edges to hold the front, back, and bottom.

If you look at the Side View in Figure 7, you’ll notice that the mating edges of the front and bottom pieces are beveled. After screwing everything together, you’ll need to trim and sand the upper front corners of the ends flush with the front. Then just add a cleat to complete the bin.
tool totes & Shelves

Although this wall unit will hold a lot of stuff, chances are there will be times when you’ll want to take some of your tools or supplies with you offsite. That’s why I included a set of tool totes. Having multiple totes allows you to organize your tools according to the job at hand (plumbing, electrical, painting, etc.).

Before building the totes, I made a pair of racks to store them. Each rack consists of two sides and three shelves that are angled for easy access. A lip on the front of each shelf holds the tote in place.

As you can see in Figure 8, the sides are simply narrow pieces of plywood. Angled dadoes hold the shelves. I cut these on the table saw using a miter gauge.

The totes are all the same size, so you can knock them out quickly by making multiple parts and setting up a mini assembly line in your shop. Each tote is made up of five parts plus a handle.

The plywood shelves are just cut to size. If you look at the side view in Figure 8, you’ll notice that the back edge of each shelf is beveled to fit flat against the slat wall. Then a hardwood lip is glued to the front edge of each shelf and the rack can be screwed together.

TOTES

The totes are all the same size, so you can knock them out quickly by making multiple parts and setting up a mini assembly line in your shop. Each tote is made up of five parts plus a handle.

I started by cutting all the ends, fronts, and backs for the totes to overall size. You’ll want to leave the ends square until you’re done with the joinery.

The front and back are connected to the ends with tongue and dado joints. Dadoes cut near the ends of each front and back piece accept tongues cut on the ends of the end pieces. Figure 9a has all the details on the joinery.

In addition to the tongue and dado joints, you’ll also need to cut a groove on the inside face of all the pieces for the tote bottom, as shown in the side view in 9a.
Figure 9. You can then measure for the bottom panels and cut them to size from 1/4" hardboard.

The handle of each tote is made from a piece of 3/4" EMT conduit, cut to length. When you assemble the tote, the handle is captured in shallow holes drilled on the inside faces of the tote ends.

Before starting assembly, however, the last step is to cut the angled profile on the ends. I did this by taping each pair of end panels together and rough cutting the profile at the band saw. Then a couple minutes at the sander completes the job.

SHELVES

For items that get used frequently, shelves are handy. They allow you to quickly find what you’re looking for. I made three sizes of shelves, as shown in Figure 10. Other than the dimensions, the construction is identical.

Each shelf is made of a top, a back, and a pair of angled supports. These parts are simply cut to size and screwed together. I found it easiest to assemble the back between the two shelf supports first, then add the top. Again, like all the other components, a beveled cleat rounds out the assembly.

SPRAY CAN RACK

Whether you’re building this project for a garage or for a wood shop, chances are you’ll need storage for spray cans. The rack shown in Figure 11 holds up to 18 standard-size spray cans.

The two sides of the rack are mirror images. Each one is cut to size, and then a series of shallow holes is drilled on the inside face to hold several lengths of 1/2" conduit. The rails are cut to length and fit loosely in the holes.

Along with the rails, a pair of back supports are also sandwiched between the sides and then simply screwed in place. Add a cleat and you’re done.

After hanging the components on the slat wall, you can start rounding up all the stuff in your garage that needs organizing.
As we were designing the slat-wall storage system, we kept coming up with new suggestions for components to add to the system. There are lots of possibilities, but we simply didn’t have the space in the magazine to show everything. So here are a couple of components that didn’t quite fit in the original article. One is a mount for a shop light, and the other is a vise table. Both of them utilize the same interlocking beveled cleats that are found on the other components.

LIGHT MOUNT

As you can see in Figure 1. The light mounting component hardly needs any explanation. It’s nothing but a small plywood panel mounted to a cleat. But the simplicity is part of the beauty of the design. You can screw a light fixture directly to the panel and then move it anywhere on the slat wall that you like.
This vise table is perfect for a light-duty vise for general tasks. As you can see in Figure 2, it's made up of just six parts. Start by cutting the parts for the back and supports to size. The top is made up of two layers, but they don't get glued together until after the stand is assembled. For now, cut the lower layer to size and leave the upper layer slightly oversize. (You'll trim it flush after assembly.)

Now you can glue and screw the back, supports, and lower top layer together. Once this is done, go ahead and glue the upper top layer in place. After the glue is dry, you can trim the upper layer flush with the lower layer using a router and a flush-trim bit.

The last piece to add is the cleat. Then you can place the table on the slat wall and drill mounting holes for your vise. For stability, you'll want to bolt the vise directly to the table.
Slat Wall Workshop

Materials List

SLAT WALL (3 sections shown)
A Back Panels (3) 48 x 64 - 3/4 Ply.
B Slats (21) 57/8 x 48 - 3/4 Ply.
C Top/Bottom Fillers (6) 107/8 x 48 - 3/4 Ply.

CORD HOOKS (2 shown)
D Backs (2) 7 x 7 - 3/4 Ply.
E Faces (2) 3 x 37/8 - 3/4 Ply.
F Cleats (2) 2 x 7 - 3/4 Ply.

PEGBOARD
H Panel (1) 231/2 x 431/2 - 1/4 Pegboard

WORKSTATION
L Side Supports (2) 15 x 14 - 3/4 Ply.
M Drawer Divider (1) 15 x 21 - 3/4 Ply.
N Filler Block (1) 3 x 201/2 - 1/2 Ply.
O Top Layers (2) 16 x 24 - 3/4 Ply.
P Cleat (1) 2 x 24 - 3/4 Ply.
Q Drawer Front/Back (2) 1/2 x 23/4 - 19/4
R Drawer Sides (2) 1/2 x 23/4 - 12
S Drawer Bottom (1) 11 1/2 x 19 - 1/4 Hdbd.
T Drawer False Front (1) 3/4 x 201/2 - 3/4 Ply.

CABINET
U Case Sides (2) 7/4 x 28 - 1/2 Ply.
V Case Top/Bottom (2) 7/4 x 20 - 3/4 Ply.
W Case Back (1) 20 x 27 - 3/4 Ply.
X Doors (2) 10 1/4 x 28 - 3/4 Ply.
Y Shelf (1) 6 1/2 x 19 3/4 - 3/4 Ply.
Z Cleat (1) 2 x 21 - 3/4 Ply.

BINS (6 shown)
AA Ends (12) 7 3/4 x 3 - 3/4 Ply.
BB Fronts (6) 5 3/4 x 17 - 3/4 Ply.
CC Backs (6) 5 x 17 - 3/4 Ply.
DD Bottoms (6) 3 3/4 x 17 - 3/4 Ply.
EE Cleats (6) 2 x 18 - 3/4 Ply.

TOOL TOTE RACKS (2 shown)
FF Sides (4) 5 x 24 - 3/4 Ply.
GG Rack Shelves (6) 9 x 20 - 3/4 Ply.
HH Shelf Lips (6) 1/2 x 11/4 - 20
II Cleats (2) 2 x 21 - 3/4 Ply.

TOOL TOTES (6 shown)
JJ Ends (12) 1/2 x 5 3/4 - 8
KK Fronts/Backs (12) 1/2 x 2 1/2 - 18 1/2
LL Bottoms (6) 8 x 18 - 1/4 Hdbd.
MM Handles (6) 3/4"-dia. x 18" EMT Conduit

SHelves
NN Sm. Shelf Tops (3) 6 x 24 - 3/4 Ply.
OO Sm. Shelf Backs (3) 3 x 20 1/2 - 3/4 Ply.
PP Sm. Shelf Supports (6) 5 x 4 1/2 - 3/4 Ply.

Spray Can Rack
XX Sides (2) 5 x 34 1/2 - 3/4 Ply.
YY Backs (2) 3 1/2 x 16 1/2 - 3/4 Ply.
ZZ Rails (9) 1/2"-dia. x 17" EMT Conduit

Cutting Diagram

(1) 1/2" x 7 1/2" - 96" (Sq. Ft.)

(1) 3/4" x 36" - 48" Hardboard

(1) 1/4" x 24" - 48" Pegboard

©2013 August Home Publishing Co. All Rights Reserved.
Cutting Diagram cont.

\(\frac{3}{4} \)" x 48" - 96" PLYWOOD

\(\frac{3}{4} \)" x 48" - 96" PLYWOOD

\(\frac{3}{4} \)" x 48" - 96" PLYWOOD
Cutting Diagram cont.

\[\text{\(\frac{3}{4} \)" x 48" - 96" PLYWOOD} \]

\[
\begin{array}{|c|c|}
\hline
B & B \\
\hline
\end{array}
\]

\[\text{\(\frac{1}{4} \)" x 36" - 48" HARDBOARD} \]

\[
\begin{array}{|c|c|}
\hline
F & F \\
\hline
F & F \\
\hline
F & F \\
\hline
S & \\
\hline
\end{array}
\]

\[\text{\(\frac{1}{4} \)" x 24" - 48" PEGBOARD} \]

\[
\begin{array}{c}
H \\
\end{array}
\]
Drilling all the screw holes and then evenly spacing all the slats for the slat-wall storage system on page 32 can be both tedious and exacting. To make the job a bit easier, I used a couple of tricks.

Story Stick. To lay out and drill the screw holes, I made a simple story stick, as shown below. This is nothing more than a narrow strip of hardboard with a row of carefully laid out holes. I used the story stick as a template to drill rows of holes through the back of the slat wall without having to lay them all out individually.

Slats. When it comes to attaching the slats, the goal is to get them all parallel and evenly spaced. To do this, I ripped several 2 1/8"-wide spacers. You’ll use these to position the slats.

Start by attaching the bottom filler flush with the bottom edge of the back panel. Then alternate spacers and slats. When you get to the top filler, you can mark it for width and then trim it to fit flush with the edge of the panel.

To attach the slats, I simply set the panel on some sawhorses and drove screws up from underneath, as in the photo above.
The slat-wall system was painted with Benjamin-Moore’s Ben water-borne interior paints in an egg-shell finish:

- Gull Wing Gray 2134-50
- Iron Mountain 2134-30
- Smoldering Red 2007-10